Course options

Make sure you check on the university, college or conservatoire website for any updates about course changes as a result of COVID-19.

Course summary

This four-year biomedical and healthcare engineering degree prepares you for a career working in healthcare, with possible destinations including hospitals, research facilities, educational institutions, or regulatory government agencies. As a trained biomedical and healthcare engineer, you directly apply the principles of science, engineering, and medicine to the operation of complex medical technologies. The expertise you develop in our master's degree will be used in the prognosis, diagnosis, monitoring and treatment of people who are seriously ill or injured. This interdisciplinary course begins with a general engineering foundation and introduces elements of health sciences, before focusing on advanced biomedical and healthcare engineering. Advanced subjects include biomedical instrumentation, biomaterials, biomechanics and rehabilitation engineering, and biosignal analysis techniques. Your learning involves a combination of theoretical, experimental, and computational study. Our approach encourages critical thinking and fosters curiosity through teamwork and independent study. Group learning and communication skills are emphasised through design projects and presentations, which demonstrate your expertise to employers. A fourth year at master's level helps your transition to professional practice.

  • Benefit from industry and NHS involvement, with projects set by external professionals, and guest lectures from practising biomedical and healthcare engineers
  • Study in world-leading test facilities, including our flagship Biomedical Engineering Research Centre, where you conduct research and test theories
  • Design and fabricate healthcare technologies, perform physiological measurements and undertake analysis of biosignals
  • Take an optional placement year to boost your employability – recent placements have included Great Ormond Street Hospital for Children, St Bartholomew’s Hospital, Draeger, PerkinElmer, CureVac, Genetic Microdevices (GMD)
  • Fast-track to Chartered Engineer status with a degree that meets all academic requirements for professional registration.
Careers in biomedical and healthcare engineering span widely across modern engineering and science. You might find work in the newest scientific fields, such as biosensing, imaging, artificial intelligence, or machine learning. Your specialist skills will also be highly transferable to roles and industries outside the biomedical and healthcare engineering sector. Our graduates can be found in businesses, research organisations and health services around the world. You could join our biomedical and healthcare engineering alumni in any of the following sectors:
  • Medical technology
  • Academic research
  • Medicine and healthcare (NHS)
  • Finance and professional services
  • Management consultancy.
We have every expectation that these degrees will receive full accreditation from the Institute of Physics Engineering in Medicine (IPEM), the Institute of Engineering and Technology (IET) and the Institute of Measurement and Control (InstMC).

Modules

You will develop a strong technical background in the key subjects of biomedical and healthcare engineering, with management studies and engineering design also integral to the course. The Engineer in Society is an innovative theme across each year. We introduce you to the economic, social and technical context where engineers work, and develop your social responsibility, knowledge, and topical engineering skills. Year 1 Build a firm foundation in mathematics, engineering, physics, electronics and computing – including anatomy, physiology and pathology. -The Engineering in Society - Social responsibility (15 credits) -Anatomy and Physiology (15 credits) -Introductory Mathematics and Programming (15 credits) -Electronics - including circuits, digital and analog electronics (15 credits) -Introduction to programming (15 credits) -Engineering Science (15 credits) -Mathematics 1 (15 credits) -Introduction to Thermodynamics and Fluid Mechanics (15 credits) Year 2 Learn to apply engineering analysis to simple but representative components of engineering systems. You will study biomedical design and advance your knowledge of biomedical instrumentation, biomaterials, biomechanics and rehabilitation engineering. -The Engineer in Society: Sustainability and Circular Economy (15 credits) -Mathematics 2 (15 credits) -Engineering Design 2 (15 credits) -Biomedical Instrumentation (15 credits) -Engineering Based Data Analysis (15 credits) -Biomaterials (15 credits) -Biomechanics & Rehabilitation Technology (15 credits) -Electrophysiology & Cardiorespiratory Measurements (15 credits) Year 3 Deepen your specialism with topics including biosignals, biosensors, medical physics and imaging, physiological fluid mechanics and biological system modelling. -Individual project (30 credits) -Biomedical and Healthcare Engineering in the society (15 credits) -Biomedical Signal Processing (15 credits) -Biomedical Sensors (15 credits) -Biological Systems Modelling (15 credits) -Medical Physics and Imaging (15 credits) -Physiological Fluid Mechanics (15 credits) Year 4 Transition to professional practice with a major design project supported by our research expertise and industry/NHS partners. We offer complementary specialist modules. -Design project group (30 credits) -Systems Engineering practice in society (15 credits) -Healthcare App Design (15 credits) -Wearable and Implantable Devices (15 credits) -Neural Engineering (15 credits) -Medical Device Entrepreneurship (15 credits) -Ethics and Biodata Management and Security (15 credits) -Robotics Imaging and Vision (15 credits) -Machine Learning (15 credits)

Assessment method

Assessment is by coursework and examinations. Group learning and communication skills are addressed through design studies and presentations. Practical and technical skills are assessed through laboratory work, data analysis and project reports. Grades obtained in each year count towards the final degree classification, with increasing weight given to the later years.


How to apply

Application codes

Course code:
BH02
Institution code:
C60
Campus name:
Main Site
Campus code:
-

Points of entry

The following entry points are available for this course:

  • Year 1

Entry requirements

Qualification requirements


Unistats information

Operated by the Office for Students
No data
Student satisfaction
30%
Employment after 15 months (Most common jobs)
65%
Go onto work and study

The student satisfaction data is from students surveyed during the Covid-19 pandemic. The number of student respondents and response rates can be important in interpreting the data – it is important to note your experience may be different from theirs. This data will be based on the subject area rather than the specific course. Read more about this data on the Discover Uni website.

Fees and funding

Tuition fees

England £9250 Year 1
Northern Ireland £9250 Year 1
Scotland £9250 Year 1
Wales £9250 Year 1
EU £20760 Year 1
International £20760 Year 1
Channel Islands £20760 Year 1
Republic of Ireland £20760 Year 1

Additional fee information

No additional fees or cost information has been supplied for this course, please contact the provider directly.
Biomedical and Healthcare Engineering at City, University of London - UCAS