Course summary
From personalised medicine, to smart cities and sustainable solutions, data science is building a better world. At the same time, developments in technology have made the field of data science more accessible than ever, creating new opportunities to gain insight into the interactions between people and their environment. This has led to a significant increase in demand for skilled data scientists, and this demand is predicted to further grow. Drawing on this, we have created the Master of Data Science (Digital Humanities), a conversion course that opens up a future in data science even if your first degree is in a non-quantitative subject such as arts and humanities. The course equips you with the skills to process and analyse data, communicate your findings to a wide audience whilst applying this knowledge to practical situations. The course begins with a range of introductory modules before progressing to more advanced contemporary techniques such as statistical modelling (in R), computer programming (in Python), machine learning, AI and neural networks. Optional modules allow you to focus on an area of interest. The MDS culminates in the research project, an in-depth investigation into an area of specific interest in which you apply the skills you’ve learned during the course to a research problem in a humanities domain of your choice. Core modules: The Data Science Research Project is a substantial piece of research into an unfamiliar area of data science, or in your subject specialisation area with a focus on data science. The project can be practical, theoretical or both, and is designed to develop your research, analysis and report-writing skills. Critical Perspectives in Data Science develops your understanding of the production, analysis and use of quantified data, and how to analyse these practices anthropologically. You will learn to think ethically and contextually about quantified data, and how to apply this knowledge to practical problems in data science, including your own research project. Digital Humanities: Practice and Theory introduces you to contemporary debates on the future of the humanities in an increasingly digital world. You will learn about the most important technical tools for representing and manipulating cultural artefacts in digital form, and how to apply cutting-edge theoretical frameworks and technical tools to practical problems in Digital Humanities. Programming for Data Science uses the popular Python software packages used in a wide range of industry settings. You will learn how to gather, manipulate and process real-world data and learn the key concepts of data analysis and data visualisation. Introduction to Statistics for Data Science focuses on the fundamentals of statistics you will need for data science. The module covers topics such as exploratory statistics, statistical inference; linear models; classification and clustering methods; and resampling and validation. Machine Learning introduces the essential knowledge and skills required in machine learning for data science using the R statistical language. You will develop an understanding of the theory, computation and application of topics such as modern regression methods, decision-based machine-learning techniques, support vector machines, and neural networks.
Modules
The remainder of the course will be made up of core and option modules which will vary depending on prior qualifications and experience. These have previously included: Introduction to Computer Science; Introduction to Mathematics for Data Science; Text Mining and Language Analytics; Data Exploration, Visualisation, and Unsupervised Learning; Strategic Leadership; Data Science Applications in Archaeology and Heritage; Qualitative Approaches to Digital Humanities; Computer Music; Ethics and Bias in Data Analytics.
Assessment method
The Master of Data Science (Digital Humanities) is assessed via a combination of essays, online assessments, reports and presentations – both individual and in small groups. The course culminates in a major research project, which is conducted and written up as an independent piece of work with support from your appointed supervisor.
How to apply
International applicants
If you are an international student who does not meet the requirements for direct entry to this degree, you may be eligible to take a pre-Masters pathway programme at the Durham University International Study Centre.
Entry requirements
A UK first or upper second class honours degree or equivalent in ANY degree that doesn’t include a strong data science component including those in social sciences, the arts and humanities, business, and sciences. Candidates with a degree in Arts and Humanities are strongly encouraged to apply. Evidence of competence in written and spoken English if the applicant’s first language is not English: Minimum TOEFL requirement is 102 IBT (no element under 23) Minimum IELTS score is 7.0 overall with no element under 6.0 or equivalent
English language requirements
Durham University welcomes applications from all students irrespective of background. We encourage the recruitment of academically well-qualified and highly motivated students, who are non-native speakers of English, whose full potential can be realised with a limited amount of English Language training either prior to entry or through pre-sessional and/or in-sessional courses. It is the normal expectation that candidates for admission should be able to demonstrate satisfactory English proficiency before the start of a programme of study, whether via the submission of an appropriate English language qualification or by attendance on an appropriate pre-sessional course. Acceptable evidence and levels required can be viewed by following the link provided.
English language requirements
https://www.durham.ac.uk/study/international/entry-requirements/english-language-requirements/
Fees and funding
Tuition fees
England | £14500 | Year 1 |
Northern Ireland | £14500 | Year 1 |
Scotland | £14500 | Year 1 |
Wales | £14500 | Year 1 |
Channel Islands | £14500 | Year 1 |
EU | £34000 | Year 1 |
International | £34000 | Year 1 |
Tuition fee status depends on a number of criteria and varies according to where in the UK you will study. For further guidance on the criteria for home or overseas tuition fees, please refer to the UKCISA website .
Additional fee information
Sponsorship information
For further information see the course listing.
Provider information
Durham University
The Palatine Centre
Stockton Road
Durham
DH1 3LE